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Abstract: Data collection in a distributed embedded system requires dealing 
with failures: data corruptions by malicious devices and arbitrary message 
delays/loss in the network. Replication of data collection devices deals with 
such failures by voting among the replica devices to move a correct data to the 
end-user. Here, a data voted upon can be large-sized and/or take a long time to 
be compiled (e.g., terrain surveillance images). The goal of our paper is to 
engineer the voting protocols for good performance while meeting the 
reliability requirements of data delivery in a high assurance setting. Two 
metrics quantify the effectiveness of voting protocols: Data Transfer Efficiency 
(DTE) and Time-To-Complete (TTC) data delivery. DTE captures the network 
bandwidth wasted and/or the energy drain in wireless-connected devices; 
whereas, TTC captures the degradation in user-level Quality of Service (QoS) 
due to delayed/missed data deliveries. Given the distributed nature of voting, 
our protocol-level optimisations to improve DTE and TTC reduce the 
movement of user-level data over network, the number of control messages 
generated, and the latency in effecting a data delivery. The paper describes 
these optimisations, and reports experimental results from a prototype voting 
system. The paper also describes a case study of voting deployed in web 
service access to information repositories. 

Keywords: device replication; malicious faults; device heterogeneity; QoS and 
performance of data delivery; software prototype; fault-tolerant web service. 
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1 Introduction 

In a real-time embedded system, it is required to move the data collected by devices  
from an external environment to the end-user. The data collection devices may be 
software and/or hardware modules interfacing with untrusted external parts of the  
system. Say, in one setting, wireless-connected devices sample the physical world data at 
regular intervals for surveillance purposes (as in sensor networks). In another setting, 
application agents running on system gateway nodes monitor the critical components of a 
large-scale system (as in infrastructure protection). Failures may arise however during 
data collection, because of the hostile nature of external conditions in an untrusted 
environment. The failures often manifest as data corruptions by malicious devices and 
timeliness violations in the processing and communication paths. 
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The data collection devices are replicated, to counter the effects of data corruptions 
and timeliness violations. The system employs some form of majority voting on the data 
fielded by various replicas (Jalote et al., 1995) to decide on the delivery of a correct  
data to the end-user in a timely manner. The voting typically employs a two-phase 
mechanism: the proposal of candidate data by a device (first phase), and the collation of 
votes from the remaining devices by a centralised secure entity for decision-making 
(second phase). In this paper, we focus on the performance engineering of the two-phase 
voting protocol under various fault modes and network conditions and different 
application scenarios. 

The data being voted upon can be large-sized and/or take a long time to be  
generated (such as images in a terrain surveillance system and transaction logs in  
an intrusion-detection system). Furthermore, the network may exhibit a wide range 
behaviours: a low message loss/delay in many situations and unexpected high loss/delay 
in other situations. The behaviour of faulty devices may itself be random, ranging 
between benign levels to malicious acts. Our goal is to engineer the voting protocols to 
achieve good performance despite the uncontrolled behaviours in the data collection 
infrastructure, while meeting the reliability requirements of data delivery needed of a 
high assurance setting. 

The performance metrics we employ are the Data Transfer Efficiency (DTE) and  
the Time-To-Complete (TTC) a data delivery. DTE captures the network bandwidth 
wasted and/or the energy drain in wireless-connected devices. Whereas, TTC depicts  
the degradation in user-level Quality of Service (QoS) due to delayed and/or missed  
data deliveries. Both the metrics have a bearing on the user-level QoS: such as the 
operational life-time of wireless connected devices and the usefulness of delayed  
data to the application. Thus, improving DTE and TTC is a goal of our performance 
engineering exercise. 

The voting protocol, in its basic form, requires the sending of consent and dissent 
votes (YES and NO) by devices about a data value being voted upon, to a central site B. 
See Figure 1. Suppose a data X(v) proposed by voter v is put to vote. Thereupon, a voter 
v′ sends YES or NO message to B based on whether its locally computed data X(v′) 
matches closely with X(v) or not. Based on the YES and NO messages received from 
{v′}, B determines if X(v) enjoys a majority consent for delivery to the user. The 
solicitation of votes from devices gets repeated until at least (fm + 1) consent votes are 
received – where fm  is the maximum number of devices that can be faulty. With N replica 

devices (where N ≥ 3), we have 1 .
2m

N
f

⎡ ⎤≤ < ⎢ ⎥⎢ ⎥
 

Given the distributed nature of two-phase voting,1 our protocol-level optimisations 
focus on reducing: 

1 the movement of user-level data between voters 

2 the number of voting actions/messages generated 

3 the latency incurred by the voting itself. 
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To achieve (1), our voting protocol employs a ‘listen-and-suppress’ based coordination 
among voters to reduce the redundant data proposals that would otherwise be generated 
by various voters due to the spontaneity in their operations (such as another voter, besides 
X(v), also proposing its data in the earlier scenario). For (2), the protocol employs a 
combination of selective vote solicitation and vote suppression, while ensuring that 

enough votes are available for decision-making. For instance, when ,
2m

N
f  the 

decision on delivering a correct data can be made with less message overhead. For (3), 
the protocol employs decentralised ‘data comparisons’ (i.e., each voter compares its 
locally generated data with the candidate data), which allows the voters to decide on their 
votes in parallel. 

Figure 1 Distributed voting protocol structure (see online version for colours) 

While the techniques (1)–(3) are not orthogonal during a run-time execution of the voting 
protocol, they have varied levels of impacts on DTE and TTC depending on the operating 
conditions and the environment. The paper describes these optimisations, along with  
the experimental results from a prototype voting system. The voting protocol however 
satisfies the safety condition, namely, a corrupted data or a data that has exceeded its time 
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bounds never gets delivered to the end-user – even under strenuous failure scenarios. The 
paper also describes a case study of deploying voting in web server applications to access 
information repositories. 

The paper is organised as follows. Section 2 gives a data-oriented view of the  
voting issues in distributed embedded systems. Section 3 identifies the role of replica 
voting in web services managing information objects. Section 4 describes the extensions 
needed of two-phase commit protocols to realise the voting functionality in asynchronous 
distributed settings. Section 5 describes the protocol optimisations to reduce the  
message overhead. Section 6 studies the voting protocols by software prototyping and 
performance analysis. Section 7 presents related works. Section 8 describes a case study 
on the data delivery performance of web App servers in the presence of replication and 
voting. Section 9 concludes the paper. 

2 Data-oriented view of voting protocols 

In this section, we describe why a content-dependent notion of device faults is necessary, 
and how this notion impacts the replica voting mechanisms. 

2.1 Timeliness and accuracy of data 

The data delivered to the user as representing an external event (or phenomenon) is 
associated with a timeliness parameter ∆. It depicts how soon the data produced by a 
sensor device should be delivered at the user since the occurrence of external event 
represented by this data (i.e., life-time of data) (Kopetz and Verissmo, 1993). 

The data generated by a sensor device may be somewhat inaccurate in content 
(relative to the actual reference datum) due to the inherent sampling errors in the sensing 
mechanism and/or resource limitations on the data pre-processing algorithms in the 
device (such as Central Processing Unit (CPU) cycles and memory sizes). Accordingly, 
the bit-level representations of data generated by two different devices may not show an 
exact match – even though the semantic contents of the data may be close enough to be 
validated as correct data (as is the case with non-numeric data such as images from 
remote cameras). 

Consider, for example, the detection of an enemy plane flying at azimuthal location, 
say, 35.00. A radar unit may report detection at, say, 35.10 azimuth due to sampling  
error. This difference in the sampled value relative to an exactly sensed value (by an ideal 
device) results in a mis-match in their syntactic representations. The ‘data comparison’ 
procedure should however treat the two location reports as being the same in terms of 
their semantic contents (a numerical comparison operation on the sampled values is just a 
special case, as in Brooks and Iyengar (1998). The voting system should tackle the 
computational complexity involved in such a semantics-aware ‘data comparison’, and 
still deliver an accurate location report to the Command Center within a few seconds of 
the presence of enemy plane. 

A device may control its selection of data processing algorithms and usage  
of computational resources, to provide results within a certain time deadline and  
content accuracy. 
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2.2 Semantics-aware data processing 

Each voter pools its processing resources to compute the results from raw input data 
within a tolerable accuracy. Furthermore, the resource needs can be data-dependent. That 
the voters may employ different computational algorithms to process the input data 
brings in another issue as well, namely, the variability in computation times of devices. 

Consider the data ds from a device s that purports to represent the actual reference 
datum dref for an external object (or phenomenon) being sampled. That Tc(ds) < ∆(dref) 
depicts if the computation time Tc(ds) to generate ds meets the timeliness attribute ∆(dref) 
for the datum. That a data ds should not deviate from its reference datum beyond a 
prescribed error limit ε(dref) depicts a safety property associated with the delivery of ds to 
the user, i.e., ║ds – dref║ < ε(dref). In the previous radar example, ε may be set as, say, 
0.20. The interpretation of ε when comparing the data from multiple devices requires a 
content-aware processing of the data. 

The data from a non-faulty device always satisfies the timeliness and accuracy 
constraints. Whereas, a faulty device may violate the constraints in an unpredictable 
manner. In the earlier example of radars, a faulty radar may mis-report the location of an 
enemy plane as, say, 48.00, or, report a more accurate value of, say, 35.150 but after a 
couple of minutes which is too late to be of any use. In the presence of such faults, the 
voting protocol should validate a candidate data for its timeliness and accuracy before 
delivering it to the user. Figure 2 illustrates how the data processing delays in voting 
impacts the timeliness of data delivery. 

Figure 2 Illustration of timeliness issues in voting (see online version for colours) 
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2.3 Protocol-level control of data delivery 

From an algorithmic standpoint, the application environment may have at most fm of the 

N voters as being faulty, where N ≥ 3 and 0 < fm < .
2

N⎡ ⎤
⎢ ⎥⎢ ⎥

 This depicts the condition for 

determining if a candidate data is deliverable to the user. 
A functional module B manages a buffer tbu f into which a device writes its data for 

voting. B resides within the secure enclave of voting machinery, and is securely 
connected to the user to whom a final result in tbu f gets delivered. The voter devices and 
B are connected through a secure multicast message channel, where communications  
are authenticated (with message signatures) and message contents are encrypted. 
Furthermore, the channels have certain minimum bandwidth guarantees, and enforce 
anonymity among voters. We assume that B is housed within a secure infrastructure that 
is immune from getting attacked. 

A voter first proposes its data by a multicast-write into the remote buffer tbu f. From 
among multiple data items proposed, the buffer manager B selects a candidate data for 
voting, and solicits votes on this data. If a majority of YES votes occurs (or, fm + 1 YES 

votes when fm <
2

N⎡ ⎤
⎢ ⎥⎢ ⎥

– 1), B passes on this data to the user. Otherwise, B selects a next 

candidate data for voting. If B cannot determine a majority before the deadline ∆, it 
discards the data (for safety reasons). Given the multicast transmission of data proposals 
across the voters and buffer manager B and the subsequent multicast of an index from B 
to refer to a data for which votes are solicited, it is guaranteed that the data getting the 
needed YES votes is already with B for delivery to the user. This functionality, combined 
with the use of secure channels, guarantees that any errors occurring during network 
transmissions will get detected. 

In a real-time system where data may arrive continuously, the information loss caused 
by a missed data delivery can possibly be compensated by the subsequent data deliveries 
(Kopetz and Verissmo, 1993) (e.g., periodic dispatch of terrain maps from a battlefield 
with adequate frequency). In this setting, the data delivery requirement can be relaxed: 
namely, the rate of missed data deliveries over an observation interval should not exceed 
a small threshold ζ(X), where 0.0 < ζ 1.0. 

2.4 Partial synchrony and device heterogeneity 

The ‘partial synchrony’ property of a system means that if an activity starts (say, a 
network message transmission), it will eventually complete in a finite amount of time. An 
upper bound on the completion time is however not known to the higher-layer algorithm 
running on the system (Castro and Liskov, 1999). In sensor networks for instance, the 
property manifests as follows.2 

A non-malicious device will eventually report correct data and on time, if it has 
enough battery power. No device can be branded as faulty, in an algorithmic sense, 
unless it exhibits a sustained bad behaviour. A network channel that loses/delays 
messages intermittently will eventually transmit a message successfully. And, enough 
number of sensor devices remain in the field so that a management entity assigns the task 
of replicated data collection to N devices. 
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The devices are made heterogeneous to minimise the chance of all of them getting 
attacked at once: such as running on different CPUs, running under different operating 
systems and programming languages, and/or implementing different computational 
algorithms to process data (Forrest et al., 1997). Here, the cost incurred by an intruder to 
attack the various devices increases drastically with respect to the number of devices 
targeted for attacks. See Figure 3. The drastic increase in intruder’s cost arises from the 
need to coordinate the attacked devices and synergise their damaging effects on the data 
delivery system. Furthermore, the increased risk of exposure of the intruder as more 
devices are targeted for attacks also contributes to the higher cost of attacks faced by the 
intruder. Given the finite amount of resources at the disposal of an intruder and the 
incentives for initiating attacks, we thus believe that only a small number of devices  
will actually be attacked. Given a fm, the degree of replication N can then be chosen such 

that fm  .
2

N
 

Figure 3 Empirical view of cost incurred by intruder to attack devices (see online version  
for colours) 

The induced heterogeneity among devices for attack-resistance manifests however as 
asynchrony in their computations, i.e., randomness in their times of data generation. This 
aspect is captured, at the voting protocol level, by the partial synchrony property – and 
the corresponding liveness assertions in terms of ζ. 

We now identify a deployment scenario of voting in representative applications, 
namely, a web service to access information objects. It allows us to clearly delineate the 
external interface to the voting machinery from the protocol-internals. 
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3 Deployment scenario of voting in web services 

A web service is provided by one or more App servers that process client queries about 
the information objects maintained by back-end data servers (we use the terms ‘App 
servers’ and ‘web servers’ interchangeably). In this section, we describe the application 
characteristics that impact the deployment of voting-based solutions. See Figure 4. 

Figure 4 Current model of web service to access information repositories (see online version  
for colours) 

3.1 Pre-processed information objects 

The information objects are often structured pieces of pre-processed data about the 
application’s external environment (e.g., data collected from target tracking sensors in  
a military application, market indices prepared by trend watchers in a stock market 
application).3 A web service allows client applications to access the repository of 
information objects in the form of queries. For example, an object may be the radar 
image of a battle terrain, and a client query may by to find out if a plane has been 
detected in the image. Multiple client queries may be posted concurrently on a web 
service, wherein the processing actions on these queries share the computational and 
network resources at the server end. 
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A comprehensive operational system is the Joint Battlespace Infosphere (JBI) at the 
US Air Force Research Laboratory Information Directorate (AFRL) to support an Air 
Operations Center (Ramseyer et al., 2006). The JBI provides an extensive query interface 
for ‘subscriber’ clients that allows multi-clause conjunctive queries on objects. In a 
terrain surveillance application for example, a query such as: ‘is there a plane in a given 
range and azimuth of the terrain?’, is a conjunctive clause specifying the interval  
in which the range and azimuth values should fall. The object update interface for 
‘publisher’ clients expects that the objects written into have already been checked for 
correctness through other means (say, to prevent malicious code from being carried as an 
object data). 

In the commercial world, IBM’s Infosphere Master Data Management Server  
(IBM Software Group, 2008) supports business process managements by allowing the 
creation of and access to multiple information objects (say, about customers, products, 
and accounts) through web interfaces. An example application is the online reservation of 
passenger travel by an airline, where the information objects in back-end store are the 
flight schedules, price and availability data, reservation records, partner airlines data, and 
the like. The web service is a front-end to the airline database, often obtaining aggregated 
travel information therefrom in response to client queries (e.g., a listing of multi-airline 
travel itineraries within a certain price range). 

As can be seen, web service based access to information objects4 has become  
a paradigm to handle the complex cyber data spaces in military, industrial, and  
business applications. 

3.2 Mobile access to information objects 

Often, the clients are mobile, being implemented on PDAs and Pocket-PCs held by 
human users and connected to the data and information servers through wireless 
networks. Access to the information servers is via a web interface that is part of a 
publish-subscribe paradigm of information management. Some clients may be beyond the 
Line-of-Sight (LOS) range from the information objects maintained by the back-end data 
servers, often, due to radio range limits of the mobile clients. Here, the web service may 
be viewed as extending the LOS range of clients by moving the pre-processed 
information physically closer to the clients over a data transport network (the RF 
information are part of the meta-data in the repository). 

As an example, consider a military application setting for battlefield information 
management through a web service where the clients are the soldiers deployed in a  
field, aircrafts monitoring a terrain, and naval ships engaged in maritime surveillance. 
Typically, all combat units (i.e., soldiers, ships, and aircrafts) over a given geographic 
region subscribe and receive Situational Awareness (SA) data, say, about the location of 
friendly forces in that region. The SA data may be, say, annotated and geo-referenced 
still images from video feeds and metadata-tagged full motion video snippets stored in a 
central repository of terrain surveillance data.5 Disadvantaged clients may request only 
meta-data objects, and download either still images or video snippets based on specific 
filter criteria (carried in the client queries). Asynchronously generated alerts can also be 
configured within the client subscriptions to determine if other friendly forces come into 
visible range. 
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Though a web service improves the LOS capabilities of mobile clients, the additional 
nodes and links in the extended transport network may themselves induce failures – in 
addition to the server vulnerabilities caused by the inherently soft nature of interfaces to 
the web service. In this paper, we focus on web server vulnerability issues due to attacks 
and the underlying voting-based solutions (the QoS parameter ζ depicts the query drop 
rate due to failures).6 

3.3 Attacks on web App servers 

Web application servers are often easy targets for attacks because they are publicly and 
freely accessible (but for, say, simple password-based authentications) and act as 
gateways to the back-end data server(s) where the information objects are kept. An 
example is the SQL injection attack (Giannoulis, 2008) where the attacker inputs a  
SQL-based search field in its query, and if the query is accepted, the attacker in effect 
gains access to the information parts stored in the back-end data server. Another form of 
attacks is that a malicious code in the web application server can corrupt the results of a 
client query on the information objects maintained by back-end data servers (we assume 
that the data servers are secured from external attacks through other means). 

To minimise the effects of attacks on web servers, the servlet processing a client 
query is replicated on multiple machines. These servlet replicas independently process 
the queries and compute the results. A voting apparatus placed in the client-interface to 
the web service compares the results generated by the replicas and votes on them. A 
result that is in the majority is then treated as the correct result for delivery to the client 
(if the timing constraint ∆ is also met). 

Our study considers the voting protocol based solutions to deal with the malicious 
faults that may occur when processing the client queries (i.e., the reads from an 
information repository) by servlet replicas. Here, we assume that the back-end data 
servers maintaining the information repository are well-secured and that the information 
updated by ‘publisher’ clients are sanitised through other means (i.e., the fault-tolerance 
mechanisms for write operations on the repository by ‘publisher’ clients are outside the 
scope of our paper).7 Accordingly, the type of web services we consider in the paper 
separates, in an architectural way, the query operations (i.e., the reads) from the update 
operations (i.e., the writes) on the back-end data servers – such as the JBI at AFRL. 

The issues of system asynchrony (at network/process levels), corruption of query 
results, and state-machine failures of system processes that arise during a query 
processing call for our generalised solution based on replica voting to achieve  
fault-tolerance in a scalable manner. In this light, other existing works also suggest  
the use of replication-based fault-tolerance, al beit, for grid environments (such as  
the eDemand project at University of Leeds) (Townsend and Xu, 2004) or with  
different solutions (such as optimistic quorums to handle updates and queries) (Malek  
et al., 2005). 

In the light of afore-described data characteristics and operating environments of 
distributed information systems, we outline the voting protocol extensions next. 
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4 Functional elements of voting protocols 

In this section, we identify the main elements of the two-phase voting protocol from a 
performance standpoint (i.e., to reduce the message overhead and data delivery latency). 
We assume that message loss in the network is not high in normal cases. 

4.1 Determination of majority from votes 

Two-phase voting protocols require the sending of consent and dissent votes (i.e.,  
YES and NO messages) about a data value being voted upon, to a central vote collator. 
The protocol determines a majority based on the number of YES (or NO) votes from 
among the responses received. That only the votes received are considered in the  
decision (instead of requiring all the N votes) guarantees liveness in the presence of  
send-omissions of faulty devices and network message loss – see Prisco et al. (2000). We 
refer to the protocol as M2PC (modified two-phase commit based voting). 

Note, a non-faulty device X that does not have its data locally computed yet votes NO 
for a data v from another voter X′ currently put to vote. This is because X does not have 
the local context yet to determine if v is good data or bad data – and hence X votes NO 
for safety reason. 

The partial synchrony property of the system allows B to determine if the data v being 
voted upon can be safely delivered. Here, the safe delivery of v requires B knowing that  
v is indeed good data, i.e., B seeing at least fm devices, excluding the proposer of v, cast 
YES votes for v. In a case where v cannot be safely delivered, B solicits a next data 
proposal from the remaining voters as a new iteration, while declaring the proposer of  
v as ineligible to propose again (the latter action prevents livelocks in the presence of 
persistent bad proposals by a malicious device). The liveness guarantee is that a good 
data will be identified in at most 2fm + 1 iterations of the data delivery round. If the time 
to decide on a correct data delivery (i.e., TTC) exceeds ∆, B does not deliver any data to 
the end-user. The non-delivery of data in a voting round constitutes a data miss at the 
user level. 

The M2PC protocol incurs a worst-case message complexity of O(Nb), where b is a 

constant: 1.0 ≤ b ≤ 2. The actual value of b depends on the environment, such as the 
extent of voter asynchrony σ(Tc) and the number of faulty voters f. 

Figure 5 shows a scenario of asynchronously executed vote solicitation steps (i.e., 
iterations) in a data delivery round. For the computation asynchrony shown with N = 6 
and f = 2, B cannot safely deliver a data in the first three iterations even though good  
data are voted upon twice – they do not muster the 4 YES votes needed for a majority. 
Because there is at least one non-faulty voter, namely, v4, that does not have its locally 
computed data ready yet. And, a safe data delivery occurs only in the fourth iteration 
when v4 also has its data ready – assuming that TTC < ∆. The scenario shows 7 YES 
votes and 12 NO votes over four successive iterations in a voting round. 

In contrast, a centralised placement of ‘data comparison’ functions, as would be 
needed in coordinator based voting schemes (Jalote et al., 1995), requires shipping the 
large-sized non-numeric data to the central node B (e.g., terrain images from remote 
cameras). Here, the data movement overhead over the network is: (fm + 1) in the best  
case and (2fm + 1) in the worst case. By careful engineering of the M2PC scheme on the  
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other hand, a voting incurs just one multicast data transfer in the best case,8 with the 
semantics-aware ‘data comparisons’ carried out locally at the voters in parallel – thereby 
reducing the drain on battery energy and the voting latency. 

Figure 5 A scenario of asynchronous voting with M2PC protocol (see online version for colours) 

For the purpose of this paper, we assume that ∆ is quite large compared to the network 
and computation delays. This means that M2PC has almost-zero data misses, because the 
timing constraints on data delivery will rarely be violated (even under a high degree of 
asynchrony in the system). 

5 Additional protocol mechanisms 

In this section, we describe the various functional elements that are layered on top of the 
basic voting protocol, to enhance the performance and robustness. 

5.1 Optimisations during data/vote solicitations 

One mechanism is the suppression of redundant data proposals from the various 
competing voters that independently attempt to multicast their proposals. In the absence 
of knowledge about which of the eligible devices will compute their data sooner and 
which devices are faulty, B cannot pre-select the devices to solicit data proposals without  
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affecting performance. So, we employ a distributed approach where a device X waits  
for a random interval of time before multicasting its proposal message (carrying the 
computed data). If X receives a proposal from another device Y while waiting to propose, 
X suppresses its attempt to propose because a proposal from X will be redundant in  
the face of the proposal already sent by Y. But, X votes on the data of Y (or any other 
data) when the latter is put to vote by B. The above ‘random-wait-before-propose’ and 
‘listen-and-suppress’ techniques reduce the network overhead when large-sized data 
proposals are involved (such as images). See Figure 6 for an illustration.9 

Figure 6 ‘Listen-and-suppress’ of redundant data proposals (see online version for colours) 

Another mechanism is the wait of B for a suitable amount of time before soliciting the 
votes for a data proposal Y. The wait time is based on the system asynchrony parameters, 
namely, µ(Tc), σ(Tc), and .dT  The deferment of vote solicitation allows a majority of the 

voters to have their locally computed data ready, so that they can vote YES/NO for Y in a 
single iteration. This reduces the amount of vote message exchanges that may otherwise 
be needed, i.e., when B can decide on a data delivery only after multiple iterations. 
Referring to Figure 5, the best point for B to start the vote solicitation is the time at which 
the four non-faulty voters (v1, v2, v4, v6) have their locally computed data ready. Given the 
voter asynchrony compounded by random network delays, B determines the best time 
point for vote solicitation based on the statistical parameters of Tc. 

Protocol-level details of the above optimisations are beyond the scope of our paper 
(see Ravindran et al., 2008). 
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5.2 Study of the effects of computation asynchrony 

We have conducted experiments to study the impact of computation asynchrony on  
the amount of message exchanges incurred to effect a data delivery to the end-user 
(without the ‘deferred vote solicitation’ mechanism). The graph in Figure 7 shows the 
experimental results on message overhead in the M2PC mode10 for σ(Tc) ranging from 
100 msec to 500 msec in a case of [N = 10, fm = 4, l ≈ 0]. 

Figure 7 Impact of computation asynchrony on message overhead (see online version  
for colours) 

Setting aside the details of experiments (described later in Section 6), the results show  
an increase in the message overhead as σ(Tc) increases, for any given f. For f = 0  
(which depicts the absence of faulty behaviour), the message overhead is about 25 for  
σ(Tc) = 100 msec, and is about 40 for σ(Tc) = 500 msec. The 2 and 3.5 voting iterations 
needed respectively in these cases arise due to the increasing number of voters who have 
not yet computed their local data when B solicits the votes for a candidate data. For the 
cases of [f = 1, f = 3, f = 4], the faulty data proposals and the asynchrony-induced aborts 
of good data proposals have a compounded effect of increasing the number of voting 
iterations – and hence the message overhead: [38, 50, 75] for σ(Tc) = 100 msec and to 
[48, 76, 87] for σ(Tc) = 500 msec. 

5.3 Selective vote solicitation 

We also implement a selective vote solicitation scheme, referred to as SELV, in which B 
multicasts a message asking for votes only from a selected subset of voters in the group. 
This is in contrast from the basic vote solicitation mechanism in two-phase voting, 
denoted as ALLV, that generates vote messages from all the (N – 1) voters for a 
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candidate data d being voted upon. The performance-engineered SELV mechanism 
reflects an optimistic premise about the sporadic occurrence of faults in the normal case, 

namely: the number of faulty voters is very small (i.e., fm  )
2

N⎢ ⎥
⎢ ⎥⎣ ⎦

 and a faulty voter 

exhibits faulty behaviour only sporadically. 
With a candidate data being good most of the times, it is likely that the required  

fm YES votes will be received in the first round of selective vote solicitation itself. In a 
case where there are not enough YES votes, B excludes the first round of voters from its 
solicitation list, and then seeks votes from one or more of the remaining voters based on 
the number of remaining YES votes needed. This proceeds until B actually receives the 
required number of YES votes. 

Figure 8 illustrates the ALLV and SELV schemes for a case of N = 5 and fm = 1. As 
can be seen, the ALLV scheme always incurs a message overhead of (N – 1) and 
completes in one round of voting. Whereas, the SELV scheme incurs a lower message 
overhead but may go through more than one round of voting. For the SELV scheme to be 
effective, the buffer manager B should wait until all the (N – fm – 1) non-faulty voters are 
likely to have their data ready. This increases the vote solicitation time, and hence 
increases the latency in data delivery to the end-user. 

Figure 8 A sample illustration of the ALLV and SELV schemes (see online version for colours) 
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In our implementation of SELV, B specifies the subset with a bit-map (of size N bits), 
where each bit corresponds to a distinct voter and the ON/OFF of a bit indicates if the 
corresponding voter should send its vote to B or not. B may use any additional knowledge 
available to it in setting the bit-map to reduce the control message overhead – such as 
which devices have a smaller µ(Tc). Given that the network can lose messages, B may 
repeatedly seek votes only from the voters whose responses are not seen in the previous 
steps – until fm + 1 YES votes or N – fm   NO votes are seen.11 

We now describe a software prototyping and performance study of our optimised 
voting protocols. 

6 Prototype implementation and analysis 

We have simulated the M2PC protocol on a local network of SUN-UNIX workstations 
interconnected by IP multicast message transport and UDP-based unicast transport over 
Ethernet. The buffer manager and the voters are implemented as UNIX threads, 
communicating with one another through IP and UDP sockets. We also have an 
implementation of the protocols on SHARP-SL3780 Pocket-PCs running LINUX. 

6.1 Simulation of voting protocols 

To simulate faults, a voter is marked as GOOD or BAD, with a BAD voter randomly 
injecting faults: such as omission failures, data corruptions, aggressively proposing data 
to outrun the GOOD voters, and other state-machine violations. Even under intense fault 
scenarios, the protocols function correctly, namely, always deliver only good data. Since 
our goal is primarily to demonstrate the performance aspects, the study has focused more 
on the normal case protocol operations. The input parameters are fm, Tc ∆, and l. 

We incorporate the variance arising from domain-specific computations in the 
performance model of M2PC by simulating their effects with randomly set computation 
times and data sizes (in the ranges 20–30 msec and 0.2–50 kbytes respectively). Data are 
sent using IP messages, with the UNIX system internally segmenting the messages  
into smaller sized packets, if necessary, during transport. The message loss naturally 
occurring in the UDP/IP network is in addition to the simulated message loss inflicted on 
the voting protocol. 

We also simulate the effect of voter asynchrony during ‘data generation’ in our 
protocol studies. The variability in ‘data comparison’ times is incorporated by using a 
random number that sets the wait time of processes around a large mean based on the 
data sizes and the word-by-word matching times required on a SUN-Ultra-10 CPU. 

The time-to-complete a voting activity is a performance metric visible to the user 
applications. The rate of missed voting rounds (i.e., how often the data delivery to the 
user fails) is another metric of interest to capture the effect of message loss and delays on 
enforcing the timeliness constraint ∆ for data delivery. The system overhead is measured 
by the amount of messages exchanged during a protocol run (on average). 
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6.2 Performability measures 

We measure the control message overhead (CNTRL), data transmission overhead (DAT), 
and TTC for various cases. The data transfer efficiency is then given by: 

size(data_delivered)
DTE .

DAT size(data) CNTRL size(control_message)
=

× + ×
 

Typically, the data size ranges between 100 bytes to 40 kbytes, based on the type of data 
voted upon. Whereas, the control messages (such as the YES/NO votes from devices and 
the vote requests from B) are 50 bytes long. 

For a data size of 30 kbytes and [σ(Tc) = 100 msec, N = 10, fm = 4, l ≈ 0], TTC lies in 
the range 175–210 msec (we set f = 4 to simulate the extreme case). The DAT overhead is 
about 2.5 and CNTRL = 18.5. 

For analysis purposes, we treat (fm, l) as external parameters that cannot be controlled 
but strongly impact the data delivery performance of M2PC. To study their effects, 
comprehensive experimental results are shown as graphs in Figure 9, for the cases of  
fm = 1, 2, 3, 4 (with N = 10 and f = fm) and l = 0%, 2%, 4%. The other parameters are set 
as: σ(Tc) = 50 msec, and µ(Tc) = 50 msec. We corroborate the experimental results based 
on the functional elements of M2PC, and their impact on TTC, DAT and CNTRL. 

Figure 9 Performance results on M2PC (see online version for colours) 
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6.3 Observations on performance results 

The TTC depends on a variety of factors: the network message delay Td and the ‘data 
comparison’ time Tcmp. In our experiments on SUN-UNIX over Ethernet, µ(Td) = 6 msec 
and σ(Td) = 2 msec. We set Tcmp = 100 msec as the wait time of a voter, to simulate a 
‘data comparison’ operation. So, B can decide in about 120 msec (when message loss rate 
l ≈ 0). This, combined with the time taken for ‘data proposal’ phase and the ‘smart wait’ 

of B for 
( )

2
cTµ

 in vote solicitation phase corroborates the results: TTC ≈ 180 msec in the 

case of l ≈ 0%. The dependence of TTC on l is captured in the 8% increase of TTC when 
l is increased to 2%. 

The DAT overhead shows an increase when fm becomes large. This is due to the 
increasing number of faulty voters who propose their data. The increase in DAT from 
about 2 for fm = 1 to about 3.5 for fm = 4 corroborates this. Note, this DAT overhead is 
distinct from the CNTRL overhead that occurs in a subsequent vote solicitation phase. 

The CNTRL overhead shows an increasing trend with fm. This is because of the 
increased number of aborts (due to a bad data proposal or an ‘early-bird’ proposal), with 
a consequent revoting in the later iterations. As for the impact of l, M2PC expends quite a 
number of control messages. This is due to the persistence of M2PC in determining if a 
candidate data is good or bad by message retransmissions. 

For loss rates exceeding 10%, the data delivery latency becomes quite high due to the 
loss of data and/or many YES/NO votes in the network and the consequent delay in 
validating a data. This can result in a data miss if the application prescribes a tight 
deadline ∆ on data delivery. 

6.4 Analytical study of selective vote solicitation (SELV) 

We have carried out a probabilistic analysis of the SELV mechanism with two 
simplifying assumptions: 

1 the network does not lose packets 

2 all the non-faulty devices have their locally computed data ready to enable them  
cast votes. 

We assume that the fm faulty voters are randomly placed among the N voters. Let  
Q(M, f, k, s) denote the probability of receiving k YES votes from a voter solicitation  
list of size s selected from an ensemble of M voters that contains f faulty voters, where  
1 ≤ f < M, 0 ≤ k ≤ s, 1 ≤ s ≤ (M – f), and 1 < M ≤ N. Let L (x, y, z) denote the average 
number of message exchanges incurred in order for B to receive z YES votes from an 
ensemble of x voters that contains y faulty voters, where 1 ≤ z ≤ (x – y), 0 ≤ y ≤ fm, and  
1 ≤ x ≤ (N – 1). Based on permutation analysis, we have: 

( , , , )

.
,

M f f
k s k

M f k s M
s

C C
Q

C

−
−=  

where 0 ≤ k ≤ f and 0 ≤ (s – k) ≤ f. Using this basic probability formulation, we have the 
following recurrence relation for message overhead: 
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with the terminal conditions being: ( ,1,1) ( ,1,1,1) ( ,1,0,1).1 .3x x xL Q Q= +  (i.e., for the case of  

y = z = 1) and (*,0, ) .zL z=  Along similar lines as above, a recurrence relation for the  

TTC of the voting, can also be formulated in terms of the number of distinct message 
exchanges to solicit votes. 

The table in Figure 10 gives the message overhead and the TTC results for various 
values of N and fm. In the case of N = 9, the SELV protocol incurs a lower message 
overhead for fm ≤ 3; but for fm = 4, the ALLV protocol incurs a lower overhead. Likewise, 
in the case of N = 7, the SELV protocol incurs a lower message overhead for fm ≤ 2; but 
for fm = 3, the ALLV protocol incurs a lower overhead. 

Figure 10 Results on voting protocol performance and end-user QoS 

The message overhead results need to be combined with the TTC results in evaluating the 
overall protocol cost, by employing a user-supplied QoS utility function. The latter 
typically assigns a lower utility for higher TTC values. Since the TTC for SELV protocol 
is always higher than the TTC for ALLV protocol, we expect that the overall cost  
break-even point will occur at lower values of fm than the results obtained with message 
overhead alone. 

As can be seen, the various protocol elements of M2PC interact with one another in 
improving the overall performance of data delivery to the end-user. 
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7 Related works on voting 

Consensus protocols dealing with ‘Byzantine Generals Problem’ (Lamport et al., 1982) 
(where failures may be arbitrary) can, in principle, be used for distributed voting, say,  
to tolerate a failed voter sending conflicting information to the other voters. These 
protocols are however quite expensive for deployment in power-constrained sensor 
network settings, and often do not scale well – due to the need to realise (fm + 1) disjoint 
message paths on a shared network infrastructure and the assumptions about synchronous 
behaviour of system elements. 

The modified form of two-phase commit we consider in the paper, referred to as 
M2PC, has the vote collation and the decision about commit relegated to B, while the 
problem-specific (and potentially compute-intensive) data interpretation for the purpose 
of casting votes is relegated to the replicas themselves.12 Given that a majority of the 
voters are non-faulty, the M2PC can arrive at a safe commit decision on the data written 
into the buffer in a timely manner. 

A recent proposal described in (Castro and Liskov, 1999) attempts to realise  
a practical approach to byzantine fault-tolerant systems by relaxing the need for 
synchronous behaviour of system elements (to carry out Byzantine voting) and by using 

non-forgeable signatures in messages. This approach still requires that 
1

.
3m

N
f

−⎢ ⎥≤ ⎢ ⎥⎣ ⎦
 

Our approach, in contrast, employs a centralised secure entity, namely, B, and resorts to 
the use of authenticated communication between protocol entities, thereby avoiding the 
expense of a full Byzantine fault-tolerant system. 

Other voting protocols studied elsewhere advocate a centralised or semi-centralised 
placement of the data comparison function. The centralised placement, as in coordinator 
based voting schemes (Jalote et al., 1995), incurs a large amount of data movement from 
voters to the central node. Likewise, the ‘witness’-based voting scheme (Du et al., 2003) 
employs a semi-centralised structure with an intermediate fusion node S to collect the 
data of 2f other voters. S then appends its own result to the data collected for onward 
transmittal to a base station. The latter then performs data comparisons.13 Both the 
schemes incur data movement overheads in the range O(f) to O(N). 

In contrast, our topological structure is decentralised, with the voters comparing  
the data themselves. With multicast transmission of data, our approach reaps a higher 
performance: due to the parallelism in data comparisons at various voters and the 
avoidance of unnecessary data movements. The worst case data movement overhead  
is O(f). 

Thus, our approach offers attractive benefits for sensor networks, given that data sets 
may be large and contain non-numeric data (e.g., terrain images generated by radar 
scans).14 The benefits are further accentuated in wireless network settings when the 
power savings accrued by reductions in data transmission overhead and the highly 
dynamic nature of environment are taken into account. 

21



   

 

   

   
 

   

   

 

   

   298 K. Ravindran, K.A. Kwiat and P. Hurley    
 

    
 
 

   

   
 

   

   

 

   

       
 

8 A case study of voting in web services 

In this section, we undertake a case study of voting based incorporation of fault-tolerance 
in the processing of web service queries initiated by client applications on the 
information objects maintained by back-end data servers. 

8.1 Processing of client queries 

A client query, say, expressed as a predicate of conjunctive clauses expressed in a  
XML-like language, is first processed by the server for syntactic checks. A query often 
prescribes logical conditions that need to be evaluated by comparing the actual data 
contained in the information repository with the reference data and/or constants indicated 
in the various clauses. The data involved in a predicate evaluation can be of complex type 
(e.g., terrain images). After syntactic checks on a client query, the server dispatches a 
servlet to actually process the query. The servlet carries out two operations: 

1 process the raw data in the repository in response to the client query about an event 
of interest 

2 notify the result of processing to the client as to whether the prescribed event  
has occurred. 

The processing of client queries is subject to the issues posed by the system-level 
asynchrony (such as the queuing of queries at servlets and the interleaving of multiple 
concurrent queries). 

If the servlet gets attacked, the processing of client queries can be flawed, which leads 
to incorrect results returned to the client. It is this kind of failure that server replication 
and voting purports to deal with. 

8.2 Attack models on web servers 

We assume that the repository is not corrupted and does not contain malicious  
data.15 Given that the native information objects are not corrupted, the faults that  
can occur are only in the query servlet processing engines (such as a malicious code  
that alters the processing of raw data and/or distorts the outcome of processing). 
Typically, the information repository and the applications that access the repository are  
in different administrative domains – and hence are subject to different security and  
fault-tolerance procedures. 

Consider, for example, the repository of stock market indices (such as DJIA, S&P500 
and SENSEX) that are updated in response to the changes in the industry profiles and 
market conditions. Different stock broker applications may access this market index 
information to predict the changes in stock prices in their own ways. Managing the 
repository of stock market indices falls in a distinct administrative domain to provide, 
say, fault-tolerance and performance in the update activities. The broker applications are 
vulnerable to data corruptions that may occur in thequery paths, and hence incur the cost 
of replicated query processing to enhance the reliability of information access. Different 
broker applications may need different levels of data resilience, and are willing to incur 
the cost of achieving the desired level of resilience. 

The attack model described in Section 2.4 (cf. Figure 3) holds for servlet failures in 
web service settings. 
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8.3 Voting-based structure of client-interface to web services 

A separate servlet instance is created that runs on behalf of the web server to process the 
queries initiated by a client. A servlet may be replicated to run on different machines for 
fault-tolerance (and for performance too, in some cases). A client query is multicast to all 
the replicas for processing. The multiple query results are then voted upon to decide on a 
correct result for delivery to the client. Figure 11 illustrates the system structure. 

Figure 11 Servlet replication and voting for query processing (see online version for colours) 

The replication, combined with the voting, purports to provide fault-tolerance in the 
query processing. If pa is the probability of a servlet getting attacked, the probability of a 
query failure at the client level (i.e., the probability that a query is not guaranteed to yield 
correct results) is: 
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where N is the number servlet replicas handling the given type of client queries. Note, the 
case of no replication has a query failure probability Pqf (single) = pa. For e.g.,  
Pqf (replica) = 0.00856 for N = 5 and pa = 0.1, i.e., a five-fold replication increases the  
data reliability by a factor of 12. The degree of replication N is determined by the cost of 
replication weighed against the need for higher data reliability. 

Note, Pqf depicts the failure rate of the voting system itself due to an intruder 
attacking more than a majority of the N devices. In contrast, the QoS parameter ζ depicts 
the query drop rate when the voting system successfully operates (i.e., less than a 
majority of the N devices fail and a data miss is detected at run-time due to the expiry of 
delivery deadline ∆). 

8.4 Performance impacts of servlet replication 

Multiple servlets may be running in the system, possibly on different machines, for 
performance reasons. For instance, different servlets may process queries that have 
different response time requirements by allocating appropriate CPU, memory and 
bandwidth resources from a shared resource pool. Such a software structure allows  
the servlets to enforce different levels of query response behaviour (i.e., QoS) for the 
various clients. 

Besides fault-tolerance, servlet replication also offers performance improvement  
by parallel processing of the client queries. This however requires a load-balancing 
mechanism to route the concurrent client queries to various servlet replicas. 

Our case study focuses on the performance impacts of providing fault-tolerance by 
servlet replication and voting. The underlying mechanism we consider is the processing 
of a query by multiple replicas of the servlet that handles the given query type and  
then the voting on their responses to decide on a correct result for delivery to the  
client. The voting protocol instance working on a data is modelled as a task dependency 
graph, where the various sub-tasks in the graph are distinct protocol activities carried  
out in a certain order (say, the data solicitations/proposals and the generation of  
YES/NO votes). The sub-tasks of various concurrent voting activities get queued at 
system resources (network, CPU, and memory storage), and are executed as per the  
task dependencies. 

Figure 12 shows the inter-play between the parallel processing of client queries  
for performance and the synchronisation of query results by replica voting for  
fault-tolerance. 

The queuing delays at system resources increase the data access latency experienced 
by clients. So, a resource scheduler manages the flow of sub-tasks through various 
resources in order to achieve a desired QoS and performance. 

8.5 Web service performance metrics 

We study the data delivery performance of a web service in the presence of servlet 
replication and the voting-based support mechanisms. The study adopts the QoS and 
performance models developed elsewhere for App Servers implementing business 
processes and transactional queries (Garcia et al., 2008). 
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Figure 12 Concurrent execution of query processing and voting tasks (see online version  
for colours) 

The performance metrics that are meaningful in web services are the Query Response 
Time (QRT) and the Control Overhead (COV) to deliver query results. QRT consists of 
the time spent in processing a query and in voting on the query results. Whereas, COV 
consists of the CPU cycles expended by the servlet (CPUs), storage accesses on the  
back-end data server (DSKd), and message exchanges with other servlets to carry out the 
voting (MSGv). In terms of the protocol parameters in our voting model, we have: 

1 2 3

QRT ;

COV .CPU .DSK .MSG ;
c vlat

s d v

T T

k k k

= +

= + +
 

where k1, k2, k3 are normalisation constants. As seen, the voting function in the  
client-server interface determines in part, but not entirely, the performance at the web 
service level. 

It is reported in Ramseyer et al. (2006) that the (mean) query response time in  
the AFRL JBI setting is about 150 msec when concurrently processing 50 single-clause 
queries. With the incorporation of servlet replication and voting and the underlying 
multicast communications needed therein, we expect the QRT to increase by at least the 
TTC estimated in our experiments. 

A comprehensive performance evaluation of a voting-based replicated web server 
system is a part of our further research. 
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9 Conclusions 

We considered replica voting protocols for reliable data dissemination in an environment 
where malicious failures can occur at the data collection devices (compounded by 
message loss/delays in the transport network). 

The functional extensions needed to the basic form of two-phase majority voting are 
the provisioning of additional protection layers to sanitise the voting decisions in the 
presence of sustained message loss. For instance, if the time elapsed becomes too high 
since the start of a data collection, the data delivery is aborted due to real-time deadlines. 
The required augmentations to the M2PC protocol to increase its robustness and 
performance were also studied. 

The paper described protocol-level optimisations needed to implement M2PC in  
a data collection system: a ‘listen-and-suppress’ based reduction of redundant data 
proposals and a ‘selective vote solicitation’ to reduce the flurry of vote message 
exchanges. The important goal is to ensure the integrity of data delivery to the end-user  
in the presence of data corruptions and other faults in the data collection system. A 
performance thrust is to reduce the message overhead, which reduces the network 
bandwidth consumed for user-level data delivery (and the power drain on wireless sensor 
devices where appropriate). Suitable performance metrics were also identified.  

Our voting system is adaptive to deal with the various failures, benign or malicious, 
occurring in the data collection environment (as in military surveillance systems and 
infrastructure protection systems). As a case study, the paper described how the voting 
system may be deployed in Web App servers to access information repositories (e.g., JBI 
at AFRL). 
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Notes 

1 That not all the (N – fm) non-faulty devices need to agree on the data being delivered makes 
the voting protocol a weaker instance of the two-phase non-blocking consensus protocol 
(Babaoglu, 1993). 

2 In the internet for example, an IP packet retransmitted many times will eventually reach the 
intended receiver, but the sender may not know about the number of retransmissions needed. 

3 The information repository is updated with new objects or object modifications by ‘publisher’ 
clients that process raw data from the external environment for writing into the repository 
(e.g., sensors deployed in a field) (Pollack and McQuay, 2005). ‘subscriber’ clients query  
the repository to identify objects of interest via read operations on the data servers  
(typically, the ‘subscriber’ clients far outnumber the ‘publisher’ clients). The system employs 
a service-oriented architecture, exporting enquiry and update operations on the master data. 

4 A web service embodies computational processing on the information objects in back-end 
store (namely, object transformation and fusion) when responding to client queries – unlike a 
simple non-computational web browser interface to the objects. A web service access may 
however involve a browser that runs on the customer computers, PDAs, kiosks, and the like 
(e.g., travel agents and passengers accessing an airline reservation web service). 
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5 See AFRL Technical Report entitled as: Use Case for Information Management,  
AFRL-RI-RS-TR-2008-214 (authors: T. Clark and A. Kwiat), for a description of mobile  
web-based applications in military settings. 

6 The web service also carries out a variety of presentation-related functions such as video 
scaling and layering, transcoding, and formatting to display the processed objects for 
dissemination by the mobile clients – say, to adapt to the network conditions such as limited 
bandwidth availability and packet loss. Such transport layer issues are also relevant in a 
system-level implementation of the voting-based mechanisms for dependable content delivery 
to a client. 

7 The notion of correct read of data from the information repository by a ‘subscriber’ client is 
relative to what data has been written into the repository by a ‘publisher’ client. The data read 
can at best be as good as the data that was written into earlier. The scope of our paper is that 
even if an object in the repository is already corrupted, a fault-tolerant read of this object will 
still be deemed as correct if the returned value is consistent relative to the (corrupted) data 
originally written into. 

8 M2PC incurs (fm + 1) data movements only in the worst case. The substantial savings in data 
movements over the centralized scheme outweighs the O(Nb) short YES/NO messages needed 
in the M2PC scheme. 

9 Recall that the use of multicasts for data proposals over secure channels allows detecting 
network errors that may occur during message transmissions – cf. Section 2.3. 

10 A message may be the data proposal from a voter, the YES/NO vote cast by a voter, the 
vote/data solicitation from B, and the like. 

11 The buffer manager B can exploit its knowledge about the status of faulty devices as gleaned 
in the earlier iterations/rounds, to selectively solicit votes from a small set of non-faulty 
devices. This allows a data delivery to occur in a relatively short time (say, with even less than 
fm YES votes), in the case of emergency access to data. Since the knowledge about which 
devices are faulty can be imperfect, there is however a risk of delivering incorrect data if one 
or more of the voters selected in the bit-map are faulty. This risk of bypassing the standard 
voting procedure should be evaluated using external mechanisms in the light of emergencies 
that require quick access to data. 

12 This is unlike the current transactional models of voting where the ‘data comparison’ 
operations are often trivial: such as each replica deciding as to whether a transaction (i.e.,  
a sequence of operations) on shared data should be committed or aborted based on  
local conditions. 

13 S may itself be a source of malicious failure, thereby requiring complex protocol mechanisms 
to deal with this possibility (e.g., the base station rotating the fusion role of S across different 
voter nodes). 

14 In both the centralised and semi-centralised structures, the computational burden of  
semantic interpretation of data is placed at the central node – which may not be feasible  
in certain applications. 

15 The mechanisms to secure the information written into the repository against malicious 
‘publisher’ clients are outside the scope of our paper. 
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